Commutative algebra WS18
 Exercise set 1.

Instructor: Anton Mellit

Dictionary:
$x \in R$ is a unit if there exists $y \in R$ such that $x y=1$.
$x \in R$ is nilpotent if there exists $n>0$ integer such that $x^{n}=0$.
$x \in R$ is a zero-divisor if there exists $y \in R, y \neq 0$ such that $x y=0$.
If $x \in R$, we denote by (x), and sometimes by $x R$, the ideal consisting of elements of the form $x y$ for $y \in R$.

Problem 1. [AM Ch. 1, Ex. 1] Let x be a nilpotent element of a ring R. Show that $1+x$ is a unit of R. Deduce that the sum of a nilpotent element and a unit is a unit.

Problem 2. [AM Ch. 1, Ex. 2] Let R be a ring. Let $f=f_{0}+f_{1} x+\cdots f_{n} x^{n} \in R[x]$. Prove that
(1) f is a unit in $R[x]$ if and only if f_{0} is a unit in R and f_{i} is nilpotent for $i>0$.
(2) f is nilpotent if and only if f_{i} is nilpotent for all i.
(3) f is a zero-divisor if and only if there exists $a \in R, a \neq 0$ such that $a f_{i}=0$ for all i.

Problem 3. [AM Ch. 1, Ex. 3] Let R be a ring. Let $f=f_{0}+f_{1} x+\cdots \in R[[x]]$. Prove that
(1) f is a unit in $R[[x]]$ if and only if f_{0} is a unit in R.
(2) If f is nilpotent, then f_{i} is nilpotent for all i. Is the converse true?

Problem 4. [AM, Prop. 1.2] Let R be a ring. Show that the following are equivalent:
(1) R is a field.
(2) $0 \neq 1$ and the only ideals of R are (0) and (1).
(3) Every homomorphism $R \rightarrow R^{\prime}$ is injective for every non-zero ring R^{\prime}.

Problem 5. Let k be a field and $n>0$ an integer. Describe all ideals in the ring $k[x] /\left(x^{n}\right)$.

