Commutative algebra WS18 Exercise set 11.

Instructor: Anton Mellit

Problem 1. [AM, Ch. 3, Ex. 11, continuation] Let R be a ring in which every prime ideal is maximal. Show that for every prime ideal $\mathfrak{p} \subset R$ the localization $(R/\operatorname{Nil}(R))_{\mathfrak{p}}$ is a field. Deduce that $R/\operatorname{Nil}(R)$ is absolutely flat.

Problem 2. Let R' be a flat R-ring via a homomorphism $\varphi : R \to R'$. Suppose for every non-zero R-module M, we have $R' \otimes_R M \neq 0$ (R' is faithfully flat). Show that

- (1) A sequence of *R*-modules $M_1 \to M_2 \to M_3$ is exact if an only if the corresponding sequence $R' \otimes_R M_1 \to R' \otimes_R M_2 \to R' \otimes_R M_3$ is exact.
- (2) For every *R*-module *M*, the natural mapping $M \to R' \otimes_R M$ is injective.
- (3) For all ideals $I \subset R$, we have $\varphi^{-1}(R'\varphi(I)) = I$.
- (4) If $f: R'' \to R$ is such that $\varphi \circ f$ is flat, then f itself is flat.

Problem 3. [AM, Ch. 4, Ex. 4] Show that in the polynomial ring $\mathbb{Z}[t]$, the ideal $\mathfrak{m} = (2, t)$ is maximal, the ideal (4, t) is \mathfrak{m} -primary, but not a power of \mathfrak{m} .

Problem 4. [AM, Lemma 4.4 iii)] Let \mathfrak{q} be a primary ideal of R, $\mathfrak{p} = \operatorname{rad}(\mathfrak{q})$, and let $x \in R \setminus \mathfrak{p}$. Show that $(\mathfrak{q} : x) = \mathfrak{q}$.

Problem 5. [AM, Ch. 4, Ex. 12] Let R be a ring, S a multiplicatively closed subset of R. For any ideal \mathfrak{a} , let $S(\mathfrak{a})$ denote the contraction of $S^{-1}\mathfrak{a}$ in R (the preimage of $S^{-1}\mathfrak{a}$ with respect to the map $R \to S^{-1}R$). The ideal $S(\mathfrak{a})$ is called the *saturation* of \mathfrak{a} with respect to S. Prove that

- (1) $S(\mathfrak{a}) \cap S(\mathfrak{b}) = S(\mathfrak{a} \cap \mathfrak{b})$
- (2) $S(\operatorname{rad}(\mathfrak{a})) = \operatorname{rad}(S(\mathfrak{a}))$
- (3) $S(\mathfrak{a}) = R \Leftrightarrow \mathfrak{a}$ meets S
- (4) $S_1(S_2(\mathfrak{a})) = (S_1S_2)(\mathfrak{a}).$

If \mathfrak{a} has a primary decomposition, prove that the set of ideals $S(\mathfrak{a})$ where S runs through the set of all multiplicatively closed subsets of R is finite.

Due date: 15.01.2019