Commutative algebra WS18
 Exercise set 13.

Instructor: Anton Mellit

Problem 1. Let $\mathfrak{a} \subset R$ be an ideal, and let \mathfrak{p} be a minimal prime containing \mathfrak{a}. Suppose \mathfrak{a} has a primary decomposition and let \mathfrak{q} be its \mathfrak{p}-primary component. Show that $\mathfrak{q}=S_{\mathfrak{p}}(\mathfrak{a})$. Deduce that the \mathfrak{p}-primary component for a minimal prime \mathfrak{p} does not depend on the choice of decomposition (Corollary 4.11). Hint: use properties of the saturation proved in earlier exercises.

Problem 2. [AM, Ch. 4, Ex. 11] Let \mathfrak{a} be the intersection of all the ideals $S_{\mathfrak{p}}(0)$ as \mathfrak{p} runs through the minimal prime ideals of R. Show that \mathfrak{a} is contained in the nilradical of R. Suppose the zero ideal has a primary decomposition. Prove that $\mathfrak{a}=0$ if and only if every prime ideal associated to 0 is minimal. Hint: use Problem 1.

Problem 3. Let $R=k[x, a, b]$ and let $J=\left(x^{2}-a, x^{3}-b\right)$. Find a Groebner basis for R using Buchberger algorithm with respect to the deglex monomial order. Verify that $a^{3}-b^{2} \in J$ using the found basis.

Problem 4. With the same R and J as in Problem 3, find a Groebner basis with respect to the lex order. Use the obtained information to determine $J \cap k[a, b]$.

Due date: 29.01.2019

