Commutative algebra WS18 Exercise set 3.

Instructor: Anton Mellit

Problem 1. Let R be a ring. Show that R is an integral domain if and only the following conditions are satisfied:

- (1) R has exactly one minimal prime ideal;
- (2) every nilpotent element in R is zero.

Problem 2. Let R be a ring. A *derivation* on R is a map $d: R \to R$ satisfying

- (1) d(f+g) = d(f) + d(g),
- (2) d(fg) = fd(g) + gd(f)

for all $f, g \in R$. Construct a bijection between the set of all derivations on R and a subset of the set of ring homomorphisms $R \to R[x]/(x^2)$.

Problem 3. Let R = k[x, y, z] for a field k. Let $\mathfrak{a} = (y, z)$, $\mathfrak{b} = (y - x^2, z)$. Compute $\mathfrak{a} + \mathfrak{b}$, $\mathfrak{a}\mathfrak{b}$, $\mathfrak{a} \cap \mathfrak{b}$. Find the dimension of the quotients $R/(\mathfrak{a} + \mathfrak{b})$, $\mathfrak{a} \cap \mathfrak{b}/\mathfrak{a}\mathfrak{b}$ as vector spaces over k.

Problem 4. The Jacobson radical of R is defined as the intersection of all maximal ideals of R. Show that $x \in R$ belongs to the Jacobson radical if and only if 1 + xy is a unit for all $y \in R$.

Problem 5. Let $\mathfrak{a}, \mathfrak{b}$ be ideals in a ring R. Suppose \mathfrak{p} is a prime ideal such that $\mathfrak{ab} \subset \mathfrak{p}$. Show that

- (1) $\mathfrak{a} \cap \mathfrak{b} \subset \mathfrak{p};$
- (2) $\mathfrak{a} \subset \mathfrak{p}$ or $\mathfrak{b} \subset \mathfrak{p}$.

Show that in the following statements (1) implies (2), and (2) implies (3):

(1) $\mathfrak{ab} = \mathfrak{p};$ (2) $\mathfrak{a} \cap \mathfrak{b} = \mathfrak{p};$ (3) $\mathfrak{a} = \mathfrak{p} \text{ or } \mathfrak{b} = \mathfrak{p}.$

Due date: 30.10.2018