Commutative algebra WS18 Exercise set 3.

Instructor: Anton Mellit

Problem 1. Let R be a ring. Show that R is an integral domain if and only the following conditions are satisfied:
(1) R has exactly one minimal prime ideal;
(2) every nilpotent element in R is zero.

Problem 2. Let R be a ring. A derivation on R is a map $d: R \rightarrow R$ satisfying
(1) $d(f+g)=d(f)+d(g)$,
(2) $d(f g)=f d(g)+g d(f)$
for all $f, g \in R$. Construct a bijection between the set of all derivations on R and a subset of the set of ring homomorphisms $R \rightarrow R[x] /\left(x^{2}\right)$.

Problem 3. Let $R=k[x, y, z]$ for a field k. Let $\mathfrak{a}=(y, z), \mathfrak{b}=\left(y-x^{2}, z\right)$. Compute $\mathfrak{a}+\mathfrak{b}, \mathfrak{a b}, \mathfrak{a} \cap \mathfrak{b}$. Find the dimension of the quotients $R /(\mathfrak{a}+\mathfrak{b}), \mathfrak{a} \cap \mathfrak{b} / \mathfrak{a} \mathfrak{b}$ as vector spaces over k.

Problem 4. The Jacobson radical of R is defined as the intersection of all maximal ideals of R. Show that $x \in R$ belongs to the Jacobson radical if and only if $1+x y$ is a unit for all $y \in R$.

Problem 5. Let $\mathfrak{a}, \mathfrak{b}$ be ideals in a ring R. Suppose \mathfrak{p} is a prime ideal such that $\mathfrak{a b} \subset \mathfrak{p}$. Show that
(1) $\mathfrak{a} \cap \mathfrak{b} \subset \mathfrak{p}$;
(2) $\mathfrak{a} \subset \mathfrak{p}$ or $\mathfrak{b} \subset \mathfrak{p}$.

Show that in the following statements (1) implies (2), and (2) implies (3):
(1) $\mathfrak{a b}=\mathfrak{p}$;
(2) $\mathfrak{a} \cap \mathfrak{b}=\mathfrak{p}$;
(3) $\mathfrak{a}=\mathfrak{p}$ or $\mathfrak{b}=\mathfrak{p}$.

