Commutative algebra WS18 Exercise set 6.

Instructor: Anton Mellit

Problem 1. [AM, Proposition 2.1] Show that:

- (1) If $N \subset M \subset L$ are *R*-modules, then $(L/N)/(M/N) \cong L/M$.
- (2) If M_1, M_2 are submodules of M, then $(M_1 + M_2)/M_1 \cong M_2/(M_1 \cap M_2)$.

Problem 2. [AM, Ch. 2, Ex. 11] Let R be a ring $\neq 0$. Let $\phi : R^{\oplus m} \to R^{\oplus n}$ be a homomorphism of R-modules. Show that

- (1) If ϕ is an isomorphism, then m = n.
- (2) If ϕ is surjective, then $m \ge n$.

If ϕ is injective, is it always the case that $m \leq n$?

Problem 3. [AM, Ch. 2, Ex. 12] Let M be a finitely generated R-module and $\phi: M \to R^{\oplus n}$ a surjective homomorphism. Show that Ker ϕ is finitely generated.

Problem 4. Let R be a Noetherian ring. Show that the ring of formal power series R[[x]] is Noetherian.

Problem 5. [AM, Ch. 7, Ex. 11] Let R be a ring such that $R_{\mathfrak{p}}$ is Noetherian for every prime ideal \mathfrak{p} . Is R necessarily Noetherian?

Due date: 20.11.2018