Algebraic Topology SS19 Exercise set 10.

Instructor: Anton Mellit

Definition 0.1. For a map $f: S^n \to S^n$ the *degree* is the number d such that the homomorphism $f_*: H_n(S^n) \to H_n(S^n)$ is given by the multiplication by d

Problem 1. A map S^n is called a *reflection* if it is the reflection with respect to a hyperplane passing through the origin. Show that any two reflections are homotopic, and show that the degree of a reflection is -1 (Hint: use the presentation of S^n as a simplicial complex with two simplices).

Problem 2. What is the degree of a map $f : S^n \to S^n$ in the following two situations:

- (1) f is not surjective;
- (2) f has no fixed points?

Problem 3. [Hatcher, Ex. 7, p. 155] Let $f : \mathbb{R}^n \to \mathbb{R}^n$ be an invertible linear map. Show that the induced map $f_* : H_n(\mathbb{R}^n, \mathbb{R}^n \setminus \{0\}) \to H_n(\mathbb{R}^n, \mathbb{R}^n \setminus \{0\})$ is identity if det f > 0 and - Id otherwise (Hint: show that f is homotopic through invertible linear maps to the identity or to a reflection).

Problem 4. Let X be a finite CW complex with n_i cells of dimension i for every i. Show that

$$\chi(X) = \sum_{i} (-1)^{i} n_{i}$$

Problem 5. [Hatcher, Ex. 2, p. 155] Show that for every map $f: S^{2n} \to S^{2n}$ there is a point $x \in S^{2n}$ with f(x) = x or f(x) = -x. Recall that the real projective space $\mathbb{R}P^k$ is constructed from S^k by identifying x with -x for each $x \in S^k$. Deduce that every map $f: \mathbb{R}P^{2n} \to \mathbb{R}P^{2n}$ has a fixed point (Hint: what is the universal cover of $\mathbb{R}P^{2n}$?) Construct a map $f: \mathbb{R}P^{2n-1} \to \mathbb{R}P^{2n-1}$ without fixed points from a linear transformation $\mathbb{R}^{2n} \to \mathbb{R}^{2n}$ without eigenvectors.

Due date: 04.06.2019